

Монокристаллы и подложки

Монокристаллы арсенида галлия (GaAs)

Монокристаллы арсенида галлия, легированные кремнием, выращиваются методом ВНК (VGF). Они обладают высокой проводимостью *п*-типа и низкой плотностью дислокаций. Используются для изготовления подложек для оптоэлектроники.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Метод выращивания	VGF
Номинальный диаметр, мм	100
Отклонение от номинала, мм	+1/-0
Кристаллографическая ориентация	(100)
Тип проводимости	n
Легирующая примесь	Si
Подвижность носителей заряда, см²/В·сек	> 1200
Концентрация носителей заряда, см ⁻³	От 1·10 ¹⁷ до 3·10 ¹⁸
Плотность дислокаций, см ⁻²	< 500

Подложки

Подложки из арсенида галлия (GaAs)

Подложки из арсенида галлия, легированного кремнием, используются в оптоэлектронике для изготовления инжекционных лазеров, свето- и фотодиодов, фотокатодов. В размерном ряду представлены подложки толщиной 450 и 625 мкм и диаметром 100 мм.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диаметр, мм	100	
Толщина, мкм	450; 625	
О тклонение от номинала, мкм ± 25		
Кристаллографическая ориентация	(100); (100)+10°; (111) A	
Тип проводимости	n	
Ориентационные срезы по стандарту	SEMI EJ	
TTV минимум/стандарт, мкм	2/<5	
Полировка	Двухсторонняя	
Легирующая примесь	Si	
Подвижность носителей заряда, $cm^2/B\cdot cek$	> 1200	
Концентрация носителей заряда, см ⁻³	От 1·10¹7 до 3·10¹8	
Плотность дислокаций, см ⁻²	< 500	

Кремниевые подложки (Si)

Кремниевые подложки применяются для изготовления дискретных полупроводниковых приборов (диодов, транзисторов), сверхбольших интегральных схем (СБИС) с тысячами полупроводниковых и пассивных элементов, микроэлектромеханических систем (МЭМС). В размерном ряду представлены подложки толщиной 380, 420 и 460 мкм и диаметром 100 мм.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диаметр, мм	100	
Толщина, мкм	380; 420; 460	
Отклонение от номинала, мкм	± 25	
Кристаллографическая ориентация	(100); (111)	
Легирующая примесь	В или Р	
Марка	КДБ или КЭФ	
Ориентационные срезы по стандарту	SEMI EJ	
TTV минимум/стандарт, мкм	2/<5	
Полировка	Двухсторонняя	

Германиевые подложки (Ge)

Подложки из германия, легированного галлием, применяют для изготовления солнечных батарей, в том числе многопереходных солнечных элементов. Такие элементы имеют высокую эффективность преобразования солнечной энергии в электрическую.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диаметр, мм	100	
Толщина, мкм	175	
Отклонение от номинала, мкм	± 25	
Кристаллографическая ориентация	(100)+6°; (111)	
Тип проводимости	р	
Легирующая примесь	Ga	
Удельное сопротивление	0.01-0.04 Ом∙см	
Концентрация носителей заряда, см ⁻³	От 1·10¹8 до 4·10¹8	
Плотность дислокаций, см ⁻²	< 500	
Ориентационный срез	(100)	
ТТV, мкм	< 15	
Полировка	Односторонняя	

ЛАЗЕРНЫЕ ДИОДЫ

Лазерные диоды – это полупроводниковые лазеры, построенные на базе диодов. Они являются компактными источниками узкополосного оптического излучения.

ЛАССАРД производит широкий спектр лазерных диодов с длиной волны излучения 770-980 нм.

Импульсные лазерные диоды

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

TEATH TEORNE AND ARTEL HOTHIGH			
Артикул	LS-DL01-1		
Режим работы	Импульсный		
Длина волны в диапазоне, нм	770-980		
Ширина спектра (HWHM), нм	2.5-4		
Выходная мощность излучения, Вт	≥ 2		
Ток накачки, А	≤ 3.0		
Частота следования импульсов, кГц	≥1		
Длительность импульса, мкс	≥ 20		
Коэффициент заполнения, %	Ø11.3×6		
Габаритные размеры, мм	Ø11.3, L = 6		

ПРЕИМУЩЕСТВА

- > Высокий КПД
- > Различные типы корпусов
- > Минимальные габариты
- > Адаптивность к системам применения

ПРИМЕНЕНИЕ

Диодная накачка

Лазерная медицинская терапия и диагностика

Дальнометрия

Измерение скорости

Системы машинного видения в дисперсионных средах

Непрерывные лазерные диоды

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	LS-DL02-1	
Режим работы	Непрерывный (CW)	
Длина волны в диапазоне, нм	770-980	
Ширина спектра (HWHM), нм	2.5-4	
Выходная мощность излучения, Вт	≥ 2	
Ток накачки, А	≤ 3	
Габаритные размеры, мм	Ø11.3×12	

Непрерывные и импульсные лазерные диоды, изготавливаемые в герметичном корпусе – это надежный источник лазерного излучения, который может применяться в оптоэлектронных системах различного назначения.

ПРЕИМУЩЕСТВА

- > Высокий КПД
- > Различные типы корпусов
- > Минимальные габариты
- > Адаптивность к системам применения

ПРИМЕНЕНИЕ

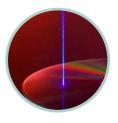
Обработка материалов, в том числе прямым воздействием

Телекоммуникация: дальние и локальные линии связи (ВОЛС)

Оптическая (диодная) накачка твердотельных, волоконных и газовых лазеров

Беспроводная оптическая связь в свободном пространстве

Инфракрасная (ночная) подсветка цели, в т. ч. с активной синхронизацией


Навигационные системы, контроль и управление

Волоконно-оптические Малогабаритные лазерные датчики, гироскопы

дальномеры

Оптическая запись и считывание

Промышленная и транспортная автоматика

Лазерная медицина

Низкокогерентная

Биохимический анализ и Измерительная техника, оптическая томография системы дешифровки ДНК научные исследования

Лазерные диоды, линейки и решетки

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

TEATIN TECRNE NAPARTEFUCIVIRM			
Артикул	LS-AD4		
Режим работы	Квазинепрерывный (QCW)		
Частота повторения импульсов, Гц	До 100		
Длительность импульса, мкс	250		
Плотность мощности, кВт/см²	8		
Длина волны, нм	770-980 (по запросу)		
Ширина спектра (HWHM), нм	4		
Размер тела свечения на выходе гомогенизатора, мм	5 × 5		
Остаточная неоднородность, %	< ±5		

Линейки импульсных лазерных диодов

Решетки диодных лазеров квазинепрерывного режима работы

Вертикальные сборки линеек лазерных диодов, работающих в импульсном режиме, обладают высоким КПД и высокой плотностью мощности и применяются для накачки лазеров. Решетки изготавливаются в различных форм-факторах и с центральной волной длины излучения по согласованию с заказчиком. Самые популярные значения центральной длины волны излучения: 808 нм, 915 нм, 940 нм, 980 нм.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	LS-A4
Режим работы	Квазинепрерывный (QCW)
Частота повторения импульсов, Гц	≤ 100
Длительность импульса, мкс	250-700
Плотность выходной мощности, кВт/см²	≤ 8
Длина волны в диапазоне, нм	770-980
Ширина спектра (HWHM), нм	≤ 4
Размер тела свечения	По техническим требованиям заказчика
Форм-фактор	По техническим требованиям заказчика
Шаг между линейками лазерных диодов, мм	≥ 0.4
Тип охлаждения	Кондуктивное/жидкостное
Рабочий ток, А	50-300

Решетки диодных лазеров применяются для накачки твердотельных и жидкостных лазеров, для обработки материалов воздействием прямого излучения и т. д.

Решетки диодных лазеров изготовлены в пылезащищенном или герметичном (опция) исполнении.

Особенность лазеров и лазерных компонентов ЛАССАРД - это адаптивность к системам применения за счет предварительного согласования с заказчиком потребительских характеристик.

Диодные модули с волоконным выходом

Импульсный режим работы (QCW)

Артикул	LS-M220-780QCW	LS-M450-780QCW	
Выходная средняя мощность, Вт	220	450	
Длина волны, нм	770-980 (по запросу)		
Ширина спектра (HWHM), нм	4		
Диаметр сердцевины волоконного выхода, мкм	600/660 ; 800/880		
Защитное покрытие волоконного выхода	Медь/акрилат + тефлон		
Тип охлаждения	Кондуктивное	Водяное	

Диодные модули с волоконным выходом

Непрерывный режим работы (CW)

Артикул Выходная мощность, Вт 40 220 Длина волны, нм По запросу Ширина спектра (НWНМ), нм Диаметр сердцевины	CW		
Длина волны, нм 915-978 (по запросу) Ширина спектра (НWНМ), нм 4			
Длина волны, нм (по запросу) (по запросу) Ширина спектра (НWНМ), нм 4			
Лизметр серпперины			
Лиаметр серпцевины	4		
волоконного выхода, мкм 600/660; 800/880 600/660; 800/	/880		
Защитное покрытие медь/акрилат + тефлон	Медь/акрилат + тефлон		
Тип охлаждения Кондуктивное Водяное			

Оптоволоконные патчкорды

ЛАССАРД производит кварцевые оптические волокна и оптоволоконные кабели на их основе. В ассортименте волокна с диаметром сердцевины от 4 до 1000 мкм длиной до 1 км - одномодовые и многомодовые, с сохранением поляризации, с акрилатным, алюминиевым и медным покрытием, с двойной оболочкой (DC). Диаметр светоотражающей оболочки наших волокон - от 110 мкм до 1100 мкм, диаметр защитного покрытия - от 140 мкм до 1500 мкм.

Из оптических волокон изготавливаются патчкорды длиной от 1 м до 50 м (по запросу - до 100 м) с разъемами SMA-905, D-80, FC и ST. Возможные типы полировки торцов оптоволокна: FLAT, PC, UPC (опционально возможна полировка АРС).

Волоконные лазеры

Непрерывный/модулируемый иттербиевый волоконный лазер

Иттербиевые волоконные лазеры обладают высокой мощностью лазерного излучения с эффективностью преобразования излучения накачки в лазерное излучение (свет-свет) до 70%, работают в непрерывном/модулируемом режиме или импульсном режиме. Лазеры позволяют производить широкий спектр работ в области обработки материалов, научных исследованиях, системах связи.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	LS-FL1000-1070	LS-FL1500-1070	LS-FL2000-1070	LS-FL3000-1070
Режим работы	Непрерывный/ модулируемый	Непрерывный/ модулируемый	Непрерывный/ модулируемый	Непрерывный/ модулируемый
Мощность выходного излучения, кВт	1	1.5	2	3
Рабочая длина волны, нм	1060-1080	1060-1080	1060-1080	1060-1080
Параметр качества пучка M ²	< 1.3	< 1.5	< 1.5	< 1.7
Габаритные размеры, мм	818×490×169	879×490×190	879×490×190	950×490×190
Тип охлаждения	Водяное	Водяное	Водяное	Водяное
Диаметр сердцевины волокна на выходе, мкм	20/25/50/100/200	20/25/50/100/200	20/25/50/100/200	20/25/50/100/200
Диапазон регулировки выходной мощности, %	10-100	10-100	10-100	10-100
Стабильность мощности, %	± 2	± 2	± 2	± 2
Частота модуляции, кГц	до 10	до 10	до 10	до 10
Питание	220B±10%, 50Гц	380B±10%, 50Гц	380B±10%, 50Гц	380B±10%, 50Гц

ПРЕИМУЩЕСТВА

- > Высокое качество излучения
- > Небольшие весогабаритные характеристики
- Возможность встраивания в аппаратуру
- > Простота в управлении и адаптивность к автоматизации

ПРИМЕНЕНИЕ

Лазерная

Лазерная сварка

Лазерная гравировка

Термообработка металлов

Аддитивные технологии

Беспроводная оптическая связь

Волоконные лазеры

Импульсный иттербиевый волоконный лазер

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ


LS-FL20-1064	LS-FL30-1064	
Импульсный	Импульсный	
20	30	
0.66	1	
1064	1064	
< 1.6	< 1.6	
500 × 215 × 93		
Воздушное Воздушн		
6-8	6-8	
10-100	10-100	
3	3	
30-60	30-60	
24	24	
	Импульсный 20 0.66 1064 < 1.6 500 × 2 Воздушное 6-8 10-100 3 30-60	

Квантроны с диодной накачкой

Квантроны квазинепрерывного (QCW) и непрерывного (CW) режима работы и твердотельные лазеры на их основе - надежные источники лазерного излучения. Ряд преимуществ, такие как большой коэффициент усиления и выходная мощность, малая расходимость и возможность формирования коротких и сверхкоротких импульсов, позволяет использовать их в различных областях науки и техники.

Квантроны квазинепрерывного режима работы с активными элементами Nd:YAG

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	Диаметр активного элемента, мм	Длина активного элемента, мм	Пиковая мощность накачки, кВт	Энергия в импульсе*, Дж
LS-Q-4-1064-QCW 10	4	110	10	0.9
LS-Q-4-1064-QCW 15	4	110	15	1.4
LS-Q-5-1064-QCW 10	5	110	10	0.9

LS-Q-5-1064-QCW 15	5	110	15	1.4
LS-Q-5-1064-QCW 20	5	110	20	1.9
LS-Q-6,35-1064-QCW 10	6.35	110	10	0.9
LS-Q-6,35-1064-QCW 15	6.35	130	15	1.4
LS-Q-6,35-1064-QCW 20	6.35	130	20	1.9
LS-Q-6,35-1064-QCW 25	6.35	130	25	2.4
LS-Q-8-1064-QCW 15	8	110	15	1.4
LS-Q-8-1064-QCW 20	8	130	20	1.9
LS-Q-8-1064-QCW 25	8	155	25	2.4
LS-Q-8-1064-QCW 30	8	155	30	2.9
LS-Q-10-1064-QCW 15	10	110	15	1.4
LS-Q-10-1064-QCW 20	10	130	20	1.9
LS-Q-10-1064-QCW 25	10	155	25	2.4
LS-Q-10-1064-QCW 30	10	155	30	2.9
LS-Q-10-1064-QCW 35	10	155	35	3.4

Частота следования импульсов до 100 Гц при длительности импульса 250 мкс.

- * Измерение энергии в импульсе производится в оптическом резонаторе длиной 280 мм с характеристиками зеркал (для λ = 1064 нм):
- Глухое зеркало *R* = 750 см, *r* = 100%;
- Выходное зеркало плоское, r = 40%.

ПРЕИМУЩЕСТВА

- Реализация пространственно-однородной поперечной накачки цилиндрических активных элементов наборами диодных лазерных линеек
- > Неравномерность профиля люминесценции не более 30%
- > Подбор лазерных линеек по спектру и мощности излучения
- > Полностью отечественная продукция
- > Поставка квантрона с источником питания и системой охлаждения (опция)

ПРИМЕНЕНИЕ

Твердотельные лазеры и усилители

Малогабаритные лазерные дальномеры

Навигационные системы контроля

Обработка материалов

Системы наведения и управления

Измерительная техника, научные

Лазерная медицина

исследования

Квантроны с диодной накачкой

Квантроны с диодной накачкой

Квантроны квазинепрерывного режима работы с активными элементами Nd:YLF

Частота следования импульсов до 60 Гц при длительности импульса 500-700 мкс. *Измерение энергии в импульсе производится в оптическом резонаторе длиной 280 мм с характеристиками зеркал (для λ = 1053 нм):

- глухое зеркало *R* = 750 см, *r* = 100%;
- выходное зеркало плоское, r = 40%.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	Диаметр активного элемента, мм	Длина активного элемента, мм	Пиковая мощность накачки, кВт	Энергия в импульсе*, Дж
LS-Q-4-1053-QCW 10	4	110	10	0.9
LS-Q-4-1053-QCW 15	4	110	15	1.4
LS-Q-5-1053-QCW 10	5	110	10	0.9
LS-Q-5-1053-QCW 15	5	110	15	1.4
LS-Q-5-1053-QCW 20	5	110	20	1.9
LS-Q-6,35-1053-QCW 10	6.35	110	10	0.9
LS-Q-6,35-1053-QCW 15	6.35	110	15	1.4
LS-Q-6,35-1053-QCW 20	6.35	130	20	1.9
LS-Q-6,35-1053-QCW 25	6.35	130	25	2.4
LS-Q-8-1053-QCW 15	8	110	15	1.4
LS-Q-8-1053-QCW 20	8	130	20	1.9
LS-Q-8-1053-QCW 25	8	130	25	2.4
LS-Q-10-1053-QCW 15	10	110	15	1.4
LS-Q-10-1053-QCW 20	10	130	20	1.9
LS-Q-10-1053-QCW 25	10	130	25	2.4
LS-Q-10-1053-QCW 30	10	130	30	2.9

Квантроны квазинепрерывного режима работы с активными элементами Nd:YAP

Частота следования импульсов до 100 Гц при длительности импульса 230 мкс. *Измерение энергии в импульсе производится в оптическом резонаторе длиной 280 мм с характеристиками зеркал (для λ = 1079 нм):

- глухое зеркало *R* = 750 см, *r* = 100%;
- выходное зеркало плоское, r = 40%.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	Диаметр активного элемента, мм	Длина активного элемента, мм	Пиковая мощность накачки, кВт	Энергия в импульсе*, Дж
LS-Q-4-1079-QCW 10	4	100	10	0.9
LS-Q-4-1079-QCW 15	4	110	15	1.4
LS-Q-5-1079-QCW 10	5	100	10	0.9
LS-Q-5-1079-QCW 15	5	110	15	1.4
LS-Q-5-1079-QCW 20	5	110	20	1.9
LS-Q-6,35-1079-QCW 10	6.35	110	10	0.9
LS-Q-6,35-1079-QCW 15	6.35	110	15	1.4
LS-Q-6,35-1079-QCW 20	6.35	110	20	1.9
LS-Q-6,35-1079-QCW 25	6.35	110	25	2.4
LS-Q-8-1079-QCW 15	8	110	15	1.4
LS-Q-8-1079-QCW 20	8	110	20	1.9
LS-Q-8-1079-QCW 25	8	110	25	2.4
LS-Q-10-1079-QCW 20	10	110	20	1.9
LS-Q-10-1079-QCW 25	10	110	25	2.4
LS-Q-10-1079-QCW 30	10	110	30	2.9

Квантроны квазинепрерывного режима работы с активными элементами Er:YAG

Частота следования импульсов до 20 Гц при длительности импульса до 1000-3000 мкс. *Измерение энергии в импульсе производится в оптическом резонаторе длиной 280 мм с характеристиками зеркал (для λ = 2940 нм):

- глухое зеркало *R* = 750 см, *r* = 100%;
- выходное зеркало плоское, r = 40%.

Артикул	Диаметр активного элемента, мм	Длина активного элемента, мм	Пиковая мощность накачки, кВт	Энергия в импульсе*, Дж
LS-Q-3-2940-QCW 5	3	100	5	0.2
LS-Q-3-2940-QCW 10	3	100	10	0.4
LS-Q-4-2940-QCW 10	4	110	10	0.4
LS-Q-4-2940-QCW 15	4	110	15	0.6
LS-Q-5-2940-QCW 10	5	110	10	0.4
LS-Q-5-2940-QCW 15	5	110	15	0.6
LS-Q-5-2940-QCW 20	5	110	20	0.8

Квантроны непрерывного режима работы с активными элементами Nd:YAG

The state of the s

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	Диаметр активного элемента, мм	Длина активного элемента, мм	Мощность накачки, Вт	Коэффициент усиления слабого сигнала	Мощность,* Вт
LS-Q-3-1064-CW 300	3	90	300	2	100
LS-Q-4-1064-CW 600	4	120	600	2.1	200
LS-Q-4-1064-CW 800	4	120	800	2.5	270
LS-Q-5-1064-CW 1000	5	130	1000	2.2	330

*Измерение мощности производится в оптическом резонаторе длиной 280 мм с характеристиками зеркал (для λ = 1064 нм):

- глухое зеркало плоское, *r* = 100%;
- выходное зеркало плоское, r = 70%.

ПРЕИМУЩЕСТВА

- Реализация пространственно-однородной поперечной накачки цилиндрических активных элементов наборами лазерных линеек
- > Неравномерность профиля люминесценции не более 30%
- > Накачка собственного производства
- > Подбор компонентов по спектру и мощности излучения

ПРИМЕНЕНИЕ

Полицотрия

Лидары

Научные исследования

Медицина

Импульсные твердотельные лазеры с диодной накачкой

Лазеры наносекундного диапазона, работающие в импульсном режиме с частотой до 100 Гц на базе квантронов собственного производства.

Благодаря большому опыту в разработке, производстве и применении лазеров продукция ЛАССАРД обладает высокой надежностью, сочетаемой с адаптивностью каждого продукта к требованиям заказчика.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Артикул	LS-L05-1064	LS-S02-532		
Длина волны, нм	1064	532		
Режим работы	Импул	Импульсный		
Длительность импульса, нс	1-	1–10		
Энергия импульса, Дж	1.5	0.5		
Частота повторения импульсов, Гц	≤ 1	≤ 100		
Охлаждение	Водяное			
Расход охлаждающей жидкости, л/мин	10-12			
Габаритные размеры, мм				
Лазер	933 × 296 × 149			
Блок питания	370 × 435 × 270			
Задающий генератор	295 × 290 × 105			

Независимая разработка ЛАССАРД — лазеры наносекундного диапазона, работающие в импульсном режиме.

ПРЕИМУЩЕСТВА

- > Излучение энергии короткими импульсами 1-10 нс
- > Частота следования импульсов до 100 Гц
- > Сверхвысокая пиковая мощность (1 ГВт)
- > Преобразование во вторую гармонику (опционально)

ПРИМЕНЕНИЕ

Дальномеры и системы дистанционного зондирования

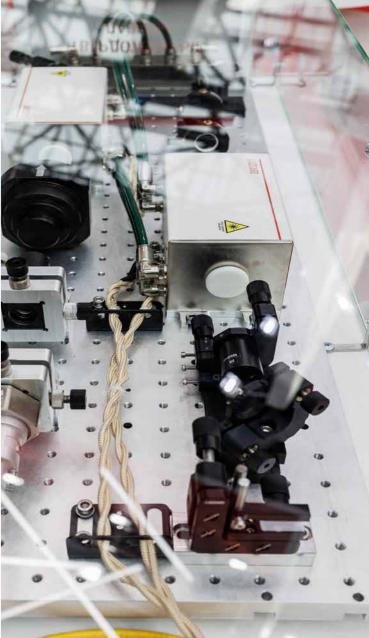
Лазерные установки для обработки материалов (резка, маркировка изделий, очистка поверхности)

Нелинейные преобразователи частоты

14

Визуализаторы ИК-излучения

Визуализаторы излучения незаменимы при работе с лазерами на основе активных сред, допированных ионами Nd, Yb и др., а также с лазерными диодами, линейками и решетками ИК-диапазона. Визуализаторы переводят инфракрасное лазерное излучение в видимый диапазон, помогают выполнить юстировку оптических схем и визуально оценить размер и форму лазерных пучков.


Мы предлагаем удобные и долговечные карточные визуализаторы на полимерной основе с размерами светочувствительной зоны 55×25 и 55×55 мм. По специальному заказу возможно изготовление визуализаторов других размеров.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Тип визуализатора	Карточка (IR Detecti⊕N S)	Карточка (IR Detecti⊕N M)	
Артикулы	91LSOV-02	91LSOV-01	
Габаритные размеры, мм	90×60		
Размер светочувствительной области, мм	55×40	55×60	
Спектральный диапазон, нм	750-2100		
Порог разрушения, мВт/см²	> 700 (непрерывный режим)		
Особенности	Необходимо дополнительное облучение (накачка) длиной волны 200-280 нм или 450-470 нм, или дневным светом		

16

Шоурум

Контакты

Запишитесь к нам в шоурум или на онлайн демонстрацию - и мы расскажем всё о нашей продукции.

Телефон + 7 495 120 68 86

E-mail sales@lassard.ru

Адрес шоурума

Москва, 033 «Технополис Москва», Волгоградский проспект, д. 42, корп. 5, пом. 1Н

Звоните нам по телефону + 7 495 120 68 86 или пишите на почту SALES@LASSARD.RU –

ждем вас по будням с 9:00 до 18:00

Официальный сайт

www.lassard.ru

ПРИСОЕДИНЯЙТЕСЬ К НАШЕМУ ОНЛАЙН-СООБЩЕСТВУ

Мы делимся актуальными новостями, говорим интересно о лазерах и выкладываем разнообразный контент

lassard_russia

ЛАССАРЛ

ПРОИЗВОДСТВО СТАНКОВ и шоурум

033 "Технополис Москва", 109316, Россия, г. Москва, Волгоградский проспект, дом 42, корпус 5

ПРОИЗВОДСТВО ЛАЗЕРОВ И КОМПОНЕНТОВ

249032, Россия, Калужская область, г. Обнинск, Киевское шоссе, дом 74

ЦЕНТРАЛЬНЫЙ ОФИС

117105, Россия, г. Москва, Варшавское шоссе, дом 26, строение 11

lassard_russia

% +7 495 120 68 86 info@lassard.ru

info@lassard.ru www.lassard.ru